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Optical power limiter 
in the femtosecond filamentation 
regime
Leonidas Agiotis   & Michel Meunier  *

We present the use of a power limiting apparatus to evaluate ultrafast optical nonlinearities of 
transparent liquids (water and ethanol) in the femtosecond filamentation regime. The setup has been 
previously employed for the same purpose, however, in a longer pulsewidth (> 20 ps) regime, which 
leads to an ambiguous evaluation of the critical power for self-focusing. The uncertainty originates 
from the existence of a threshold power for optical breakdown well below the critical power for 
self-focusing within this timeframe. Contrarily, using the proposed apparatus in the femtosecond 
regime, we observe for the first time a unique optical response, which features the underlying physics 
of laser filamentation. Importantly, we demonstrate a dependence of the optical transmission of the 
power limiter on its geometrical, imaging characteristics and the conditions under which a distinct 
demarcation for the critical power for self-focusing can be determined. The result is supported by 
numerical simulations, which indicate that the features of the observed power-dependent optical 
response of the power limiting setup are physically related to the spontaneous transformation of the 
laser pulses into nonlinear conical waves.

Prior to the z-scan first demonstration1, Soileau et al. introduced a passive optical power limiting device that 
relies on the self-focusing property of liquids2. The main idea of passive operation was based on the concept 
that a focused beam passing through a nonlinear medium will undergo strong phase change on its wavefront 
at increasing input powers, due to combined laser-induced breakdown and self-focusing inside the nonlinear 
medium. Thus, by placing an imaging lens after the nonlinear medium, one can observe limited transmission 
through a pinhole placed at the focus of that lens at high input powers.

In their original paper, the authors have employed their setup using nanosecond and picosecond pulses at 
an optical wavelength of 1.06 μm to study the nonlinear response of CS2. Indeed, the device has been tested to 
exhibit a “step-function”-like transmission for increasing input powers, of which the demarcation was identi-
fied as the critical power for self-focusing. The latter is generally defined as the required input peak power of 
the pulse above which self-focusing overcomes diffraction3,4. Effectively, the beam collapses so that its intensity 
increases and ionizes the medium. Nonetheless, for a pulse regime typically longer than 1 ps, optical breakdown 
is reached at a significantly lower power than the critical power for self-focusing within this timeframe due to 
the comparable times between energetic electron collisions and laser pulsewidth3,5. By contrast, for pulses in the 
femtosecond regime, self-focusing typically occurs rapidly, before optical breakdown is attained in the medium5. 
Hence, the use of the technique with laser pulses longer than 1 ps, can typically lead to an underestimation of 
the critical power for self-focusing.

In this work, we employ the foresaid optical power limiter in the femtosecond filamentation regime, and we 
measure ultrafast optical nonlinearities in deionized water and ethanol. In our proposed approach we introduce 
to the system a pinhole (~ 15 μm in diameter), much smaller than the imaged beam waist at this location (~ 32 μm 
in diameter), which ensures a significant variation on the recorded output transmittance, related to spatial trans-
formation of the beam profile after the beam collapses into a filament. Thereby, we observe unique features on 
the optical response of the setup when the pinhole is placed at various positions with respect to the focal plane 
of the imaging lens and we demonstrate that the critical power for self-focusing, among with other nonlineari-
ties, can be reliably evaluated by this technique in the femtosecond regime. Further, we discuss a comparison 
between experimental observations and numerical simulations related to the beam size in the far-field and its 
transformation into a nonlinear conical wave6–8 for the well-established case of water.
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Results and discussion
We follow a heuristic approach in the experimental procedure, by obtaining measurements for various locations 
of the pinhole with respect to the imaging plane of the system (“Methods”). The reasoning lies in the highly 
dynamic nature of laser filamentation3, which depends strongly on the beam propagation axis-z. Indeed, near the 
critical power, a nonlinear focus is initiated in the medium, moving backwards in z as the power increases and 
the beam collapses into a filament. Accordingly, the backwards nonlinear focus displacement inside the medium 
is expected to affect the position of the imaged beam waist in the far-field. In what follows, we present results 
collected at three different locations of the pinhole: (a) exactly at the imaging plane (the plane that corresponds 
to the formed focus after lens L2 ), i.e. at z = zi , (b) at 1.5 Rayleigh lengths zR,i before the imaging plane, i.e. at 
z = zi − 1.5× zR,i and (c) at 1.5 Rayleigh lengths after the imaging plane, i.e. at z = zi + 1.5× zR,i . The factor 
1.5 is ∼ |MA|−1 , where MA denotes the effective magnification of the system. The latter is noticeably affected 
by the focal waist position inside the sample, due to linear refraction (“Methods/Experimental”). Effectively, 
cases (b) and (c) correspond to the limits of field of focus at the focal plane of lens L1 (“Methods/Theoretical”).

Figure 1 shows typical measurements in the examined liquids (water, ethanol). Case (a) is conceptually 
the same as the one of the original design of the device2, however, in the filamentation regime, it appears to 
bear different features. One cannot distinguish a “step-function”-like transmission, instead, a gradual, mono-
tonic decrease of the latter is observed as the input optical power P approaches the critical power for self-
focusing Pcr . In addition, the response of the two liquids appears to be almost identical for both samples for 
P < 7.2MW ≡ PethOB , where PethOB stands for the optical breakdown threshold power for ethanol, which is discussed 
in the next section. Note that this threshold is evident in the signals of cases (b) and (c).

Contrarily to case (a), in case (b) features related to the collapse of the beam are observed. For both liquids, the 
optical transmission reaches a plateau (at around ∼ 5.3 and ∼ 4.2MW for water and ethanol respectively), which 
phenomenologically coincides with a strong phase modulation of the beam. The latter was apparent by visually 
inspecting the spatial profile of the beam when intercepted by a white card, as it acquires a redder color. After 
the foresaid plateau is reached, the optical transmission remains almost steady over a small P interval. Above a 
critical input power, optical transmission increases monotonically again. It is that power that we identify as the 
critical power for self-focusing Pcr , since, as it will be shown later, it coincides with a beam width transformation 
and supercontinuum generation threshold PSC in water. The same conclusion can be generalized for the case 
of ethanol, owing to the similarity of the observed features on the power limiter response and of the qualita-
tive observations on the beam width transformation into white light when intercepted by a white card for both 
liquids. Indeed, experiments have shown9 that the PSC is approximately equal to Pcr with ±10% precision for a 
variety of optically transparent media, which is attributed to the universality of the physics of laser filamentation5. 

Figure 1.   Typical experimental measurements in deionized water (black solid lines) and ethanol (red solid 
lines) by the optical power limiter in the filamentation regime. The top figures (a–c) present the output signal 
averaged over 10 shots and the bottom figures (d–f) show the standard deviation of these measurements. Top 
and bottom figures (presented in column pairs) correspond to different locations of the pinhole: (a,d) z = zi , 
(b,e) z = zi − 1.5× zR,i and (c,f) z = zi + 1.5× zR,i . Distinct features related to collapse of the beam become 
evident for case (b). In all three cases, a decrease in optical transmission and sudden increase in the standard 
deviation of the measurement is observed for ethanol at an input power ~ 7.2 MW, which is identified as an 
optical breakdown threshold.



3

Vol.:(0123456789)

Scientific Reports |        (2021) 11:14270  | https://doi.org/10.1038/s41598-021-93683-x

www.nature.com/scientificreports/

Importantly, our analysis, presented in the next paragraphs for the case of water, aims to demonstrate that Pcr 
can be reliably determined by a standalone measurement by the power limiting method operated in case (b) 
geometry, presumably for a variety of transparent optical media. Finally, note that, despite the common signal 
features of both examined liquids in case (b), there is a clear difference in the value of P that these features occur 
in each one of the samples, indicating the sensitivity of the measurement.

Case (c) exhibited a behaviour more like case (a), nonetheless, the transmitted signals exhibited a smaller slope 
as a function of P . In addition, ethanol measurement yielded a slightly weaker optical transmission compared to 
water at a P interval before the total collapse of the beam into a filament, however, it was still difficult to identify 
the features discussed in case (b) for both samples.

Further, we note that the foresaid observed features are not affected significantly by losses related to non-
linear absorption at increasing input powers, which was confirmed in open-apertured optical transmission 
measurements through the cuvette when filled with the two liquids. Indeed, the optical transmission reduced 
only by ~ 1–2% at 6.8 MW for water and at 5.2 MW for ethanol, and by ~ 5% at 8 MW for water and at 6 MW for 
ethanol, respectively. Therefore, significant nonlinear losses occur only after the beam collapses into a filament, 
most likely due to increased plasma generation and direct multiphoton absorption in the liquids.

Evaluation of nonlinearities
Optical breakdown.  The criterion for the determination of Pcr as described by Soileau et al.2 in their orig-
inal work, was established by monitoring the standard deviation of normalized transmission measurements 
through the pinhole (calculated over 5 shots at each input power). The authors observed that the value of the 
foresaid standard deviation increases by an order of magnitude at Pcr and subsequently suddenly drops. A simi-
lar behaviour was observed in our experiments solely for the case of ethanol. The event was recorded only after 
an input pulse power of ∼ 7.2MW , which was accompanied by a sudden drop on the optical transmission and a 
spark ignition inside the sample, as visually inspected to have been developed near the geometrical focus, imply-
ing the manifestation of optical breakdown.

As was demonstrated for example in10, typically electron densities of the order of 10–18 cm−3 are reached 
during filamentation by pulses of ~ 50 fs FWHM, via multiphoton ionization in a transparent medium, which 
is well below the critical plasma density of ~ 10–21 cm−3 for optical breakdown. The latter can be reached only by 
subsequent avalanche ionization, which depends implicitly on the focusing geometry (and explicitly on the devel-
oped intensity), on the optical properties of the medium, the ionization potential and the related cross section 
for cascade ionization5,10. Therefore, we attribute the observed spark ignition to favorable conditions for optical 
breakdown via avalanching in the case of ethanol at ~ 7.2 MW. Notably, simultaneous manifestation of both 
optical breakdown and filamentation is possible under certain focusing conditions inside a given sample, which 
is characterized by a decrease of the repetition rate of the pulse (here transformed in white light at the specified 
input power for ethanol), which was observed in our experiments and also reported in Fig. 6c of reference10.

Critical power for self‑focusing.  Further, we evaluated experimentally the power dependence of the far-
field beam size (1/e2) near the imaging plane that is formed after L2 (see schematic in “Methods” section) when 
the cuvette is filled with water. The results (Fig. 2) show how the imaged beam size undergoes a transformation 
while P approaches Pcr . Initially, it remains almost the same at zi , it marginally increases at zi + 1.5× zR,i , while 
it reduces at zi − 1.5× zR,i up to an input pulse of ∼ 5.3MW , which coincides with the strong phase modulation 
observed experimentally. After that point, it increases for all three examined planes, presumably due to a shift 
in the angular divergence of the beam’s wavefront in the presence of strong self-phase modulation. The behav-
iour persists up to a critical power, (which we identify as Pcr ) above which it drops for all planes. The initially 
opposing trend of beam size versus P for z = zi − 1.5× zR,i compared to the rest two examined z , clarifies the 
signal behaviour in case (b) of Fig. 1. The beam size undergoes a sharper shift (reaching a local minimum) for 

Figure 2.   Imaged (far-field) beam size dependence on the input pulse power for deionized water at the three 
examined z-coordinates. In the far-field, a maximum divergence should correspond to a minimum beam size 
near the focal plane inside the sample. There is a strong implication of beam-width transformation due to the 
collapse, therefore, the local maximum at 6.7 MW is identified as the critical power for self-focusing Pcr.
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P ∼ 5.3MW , i.e., around the experimentally observed onset power for strong phase modulation of the pulse. 
Accordingly, such a sharp shift influences the recorded signal on the apertured detector since a larger beam size 
typically results in a decrease on the axial fluence of the beam. Finally, we note that the experimental 1/e2 beam 
size evaluation is approximate near Pc since the beam is known to be gradually transformed into a nonlinear, 
Bessel-like conical wave upon collapse into a filament7,8,11.

Supercontinuum generation.  Importantly, Pcr seems to be very close to PSC , defined as the dramatic 
increase on the pulse spectrum, an assessment that has also been drawn, for example, in references9,10,12. We 
illustrate this result by a measurement of the relative spectral broadening of the pulse as a function of the 
input pulse power in water (as performed in12). Based on the above analysis shown in Fig. 3, we conclude that 
Pwatercr

∼= PwaterSC ≈ 6.7 MW and we evaluate Pethanolcr
∼= PethanolSC ≈ 5.2 MW from the optical limiter measure-

ment [case (b) of Fig. 1].

Nonlinear refractive index.  Having marked the onset for Pcr we derive the nonlinear index of refraction 
n2 of the examined liquids from our measurements, accounting for the following: First, as it has been demon-
strated by Fibich et al.4, we assume that the threshold for filamentation, must coincide with the critical power for 
self-focusing. The same author has demonstrated that for a Gaussian input spatial beam profile the critical power 
for self-focusing is inversely proportional to the nonlinear index of refraction, according to4,13

Another factor considered, which significantly affects the critical power for self-focusing, is the beam propa-
gation factor M2. We use a relation determined by Porras et al.14, which has been derived through a generalized 
ABCD propagation law and it reads

where γ is a dimensionless factor related to the beam profile distribution and is equal to 1 for Gaussian pro-
files. Using Eqs. (1) and (2), M2 = 1.4 (“Methods/Experimental”) and the values of the linear refractive index 
n0 = 1.33 and 1.36 for water and ethanol respectively15, we have calculated n2 for the examined liquids. The results 
are shown in Table 1 along with values cited in the literature, obtained by different techniques, for comparison.

In Table 1, the ultrafast (isotropic) nonlinear response of the two liquids, as evaluated by the power limiting 
method herein, is in fair agreement with measurements presented in the literature by various techniques at a 
wavelength around ~ 800 nm. For the case of water, at a longer wavelength of 1150 nm, the nonlinear refractive 
index is expected to increase as demonstrated experimentally in22, an observation that holds for increasing wave-
lengths up to 1250 nm. Further, we account that for data at a wavelength of 1024 nm18, a fair comparison of n2 can 
still be performed with our measurements. In terms of pulsewidth excitation, Miguez et al.17 have demonstrated 
that for pulsewidth excitation shorter than 200 fs the ultrafast component of the nonlinearity remains almost 
unchanged for the two liquids. Although that according to that observation one would not expect a significant 
influence of the pulsewidth on n2 value within the range of < 200 fs, the value of Pcr might still be affected due 
to group velocity dispersion, while Eq. (1), which is a steady-state result4, is usually applied as a reference in the 
case of ultrafast pulses3,4. Further, results presented in17 imply that for pulses of 10 ps, n2 can increase up to 40% 
(30% increase is discussed for ethanol in16) due to contributions from molecular reorientation. However this is 
not observed when comparing the values of n2 reported by18 with the rest of the reported values shown in Table 1. 

(1)Pcr,0 =
3.79�2

8πn0n2

(2)Pcr = Pcr,0M
4/γ

Figure 3.    (a) Relative spectral broadening of the pulse as a function of the input power in deionized water. The 
estimation has been performed as in12. Note that the authors of12 have chosen �ω/ω0(P = PSC) ∼= 0.5 , so here, 
PSC is close to 6.7 MW. (b) Experimentally obtained supercontinuum spectra for water as a function of the input 
power.
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The relative magnitude of the measured nonlinearities between water and ethanol is yet demonstrated. Finally, 
we should note that direct methods such as the z-scan technique, beam deflection, supercontinuum onset and 
the power limiting method typically require low repetition rate laser sources (< 1 kHz) to ensure that thermal 
effects are not affecting the evaluated nonlinearities.

Theoretical interpretation
In what follows, we examine theoretically the experimental observations of the imaged (in the far-field) beam size 
dependency on P in water. Let us first note that all three examined far-field beam profile distributions near the 
focal plane of imaging lens L2 are compressed by the same ratio di/do ≡ |MA| , where di is the distance from L2 
to the imaging far-field plane at zi , do is the distance of lens L2 from the focal plane of lens L1, located at zf  , and 
MA denotes the linear magnification of the system. The latter remark imposes that, upon lens transformation, the 
planes near the focal plane of L1 at zf ± zR,f  correspond to the imaging (far-field) planes at zi ∓ zR,i × |MA|−1 
(“Methods”).

The power dependence of the calculated beam waist size wf  (at the focal plane of L1) inside the propaga-
tion medium (Fig. 4d) exhibits a behaviour different than the one measured at the imaging (far-field) planes, 
as expected. The imaged far-field beam size wi versus P should be calculated instead and compared with the 
experiment. We first calculated the far-field electric field amplitude distribution S(t, k⊥) at an arbitrary distance 
d ≫ wf  from the examined z coordinates. We integrated in time (since the experimental measurements are 
time-integrated) to find the radiant energy angular spread distribution (shown in Fig. 4a–c) over a time-averaged 
instantaneous transverse wavenumber, i.e., �k⊥� ≡ 1

T

∫ T
0 dtk⊥. From the resulting distributions we have calculated 

the second moments (twice the standard deviation σ�k⊥� ) of the power dependent �k⊥� . Assuming that the pulse 
undergoes only small spectral modulation before the critical power, we use the relation θ ≈ k⊥c/(ω0n0)

11, so that 
2σ�θ� ≈ 2σ �k⊥�c/(ω0n0) , to calculate the standard deviation of the divergence 〈θ〉 at the fundamental frequency ω0 
as a function of P . Apparently, this is an oversimplification when P approaches Pcr , in view of strong dispersion 
while the spectrum of the pulse increases (Fig. 3). Thus, as shown in Fig. 4e, the divergence increases versus P , 
however, with expected deviations as P approaches Pcr . Even so, as is, wf  and 2σ〈θ〉 versus P allow for a first order 
approximation of the imaged far-field beam size wi (see “Methods”), shown in Fig. 4f.

A good agreement is observed between experiment (Fig. 2) and simulations (Fig. 4f) up to ∼ 4.5 MW . The 
agreement gradually breaks down beyond that point, which is a result of the simplification �θ� ≈ �k⊥� c/(ω0n0) . 
In fact, �k⊥� can be related to the instantaneous frequency of the pulse in a self-phase modulation process, leading 
to the better approximation �k⊥� ∼ ω0n0

c �θ(t)
[

1− l
c ∂ tn(t)

]

�, where n(t) and θ(t) are respectively the intensity 
(and implicitly time) dependent refractive index and divergence, and l  denotes the propagation distance of the 
pulse. Thus, it becomes evident that the former simplified relation between θ and k⊥ does not hold as P approaches 
Pcr in view of the strong modulation of the pulse spectrum �ω ∝ l

c ∂tn(t) (see Fig. 3). Dependency of phase 
modulation on l  also implies in practice that the observed signal features of the apparatus (Fig. 1) are dependent 
on the location of the focal plane inside the cuvette, which in turn is related to the effective magnification of the 
system due to linear refraction (see “Methods”).

In effect, upon collapse the beam transforms into a nonlinear conical (Bessel-like) wave and as a result the 
radiant energy angular spread varies at the generated wavelengths of the expanded spectrum surrounding the 
fundamental, according to the Fourier-space relation k⊥(ω) = k(ω)sinθ(ω)3,6–8,11. Consequently, the radiant 
energy angular spread of the fundamental wavelength will be limited upon this transformation beyond the criti-
cal point, as energy is transferred at other wavelengths and flows at high angles (X-wave formation for normal 
dispersion), forming a rim that surrounds the central spot of the generated white light.

Table 1.   Evaluation of the Kerr nonlinear index of refraction of deionized water and ethanol: a comparison 
between values in the literature and our measurement. NA non available. a Only the electronic n2 obtained in16 
is considered. b Larger pulsewidths are examined in17, however, only the smallest value is considered here, to 
exclude slower contributions on the value of n2. c The value of n2 in18,19 is given in 10−13 esu, thus we have 
calculated χ(3)

1111(esu) = n0n2(esu)/(8π) and converted in m2/W2 by applying the relation 
n2
(

m2/W
)

=
(

3.95× 10−6
)

/

[

n20χ
(3)
1111(esu)

]

20.

Reference Method

n2

(

×10
−20

m
2
/W

)

Wavelength (nm) Pulsewidth (FWHM) Repetition rateWater Ethanol
16 Beam deflectiona 2.5± 20% 3.2± 20% 800 150 fs 1 kHz
17 Ellipse rotationb 3.4± 20% 4.5± 20% 790 60 fs NA
21 Spectral interferometry 1.9± 10% 815 90 fs 1 kHz

19 Optical Kerr effectc 1.9±NA 2.4±NA 820 130 fs 76 MHz (chopped at NA 
frequency)

10 Supercontinuum onset 2.0±NA 810 45 fs 1 kHz
22 z-scan 3.5± 1.9 1150 90 fs 10 Hz
18 Optical Kerr effectc 1.5±NA 2.9±NA 1024 10 ps 150 MHz (100 shots)

Our work Power limiting 2.1± 20% 2.7± 20% 800 55 fs 50 Hz
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Conclusion
An optical power limiter has been employed to determine ultrafast optical nonlinearities of two transparent 
liquids (deionized water and ethanol) in the femtosecond filamentation regime. The technique has been utilized 
in the past only in longer pulse regimes (> 1 ps) leading to optical breakdown inside the samples, which typically 
occurs at optical pulse powers lower than the critical power for self-focusing. In contrast, in the femtosecond 
regime, the optical response of transparent liquids is governed by distinct features in the context of the studied 
technique. Particularly, we find that the threshold for self-focusing can be distinguished in the output signal 
when the apertured detection is located behind the conjugate focal plane of the imaging system, at a distance 
governed by the field of focus of the first focusing lens and the effective magnification. A presented theoretical 
analysis indicated how the effect is related to the spontaneous transformation of the beam into a nonlinear coni-
cal wave at the onset of filamentation.

Importantly, in this work, we demonstrated that the use of the power limiting setup in the femtosecond 
filamentation regime can be reliably utilized for future studies of ultrafast optical nonlinearities of various trans-
parent materials, of which the evaluation is a challenging task even with the z-scan technique. Finally, the power 
limiting setup is anticipated to be a useful tool both for fundamental studies (e.g., competition between filamenta-
tion and optical breakdown) and the development of novel femtosecond laser filamentation based applications.

Methods
Experimental.  Our setup is shown in Fig. 5. We employed transform-limited pulses of 55  fs pulsewidth 
(defined by the full width at half maximum FWHM) produced by a Ti:Sapphire amplifier, operating at a repeti-
tion rate of 50 Hz. The laser beam, which had a Gaussian spatial profile and initial 1/e2 size of ~ 2.9 ± 1.5% mm, 
was collected by a lens L1 with a focal length of 200 mm. The beam waist of the focused beam in air was formed 
at approximately the same position with the focal plane of L1 and was estimated with a knife edge technique to be 
wf ∼ 24.5± 3%µm (1/e2), with a Rayleigh length ~ 1.680 mm. A second lens L2 with a focal length of 100 mm 
was positioned at a distance do ∼ 300 mm apart from the focal plane of L1. Thus, L2 imaged the focused beam 
spot after di ∼ 150 mm from its center with a magnification MA0 ∼ −0.5 (Fig. 6a). Indeed, the focused beam 
waist after L2 was estimated to be ~ 12.4 ± 5% μm with a knife edge technique in air. The beam propagation factor 
M2 of the beam was measured to be ~ 1.4 after both L1 and L2 in air. 

A 10 mm thick optical cuvette was positioned so as its center (5 mm from its entrance window along the 
beam propagation direction) coincided with the focal plane of L1. When filled with the examined liquids, the 
beam waist was estimated to be formed at ∼ n0 × 5 mm from the entrance window, due to the refractive index 
difference between the propagation mediums and air in the linear regime. Accordingly, the Rayleigh length at the 
focal plane of L1 is estimated zR,f ∼ n0 × 1.680 mm . These effects were confirmed experimentally by measuring 
the beam radius after the cuvette, when filled with water. Further, the addition of water in the optical cuvette, 
resulted in a change of the size of the beam collected by L2, a shift of the imaged spot position after L2, and also 
a change of the dimension of the imaged focal spot ( wi ∼ 16.2± 5% µm ) and Rayleigh length at the imaging 

Figure 4.   Numerical calculations based on Eqs. (3) and (4) (“Methods”) in water. (a–c) show the time-
integrated and normalized far-field spectra S(t, k⊥) versus the time-averaged instantaneous transverse 
wavenumber �k⊥� , calculated by the Hankel transformation of the solution of Eqs. (3) and (4) at (a) z = zf−zR,f , 
(b) z = zf and (c) z = zf + zR,f respectively. The distributions are identified as the radiant energy angular 
spread, understood as the far-field counterpart of the pulse fluence (radiant energy exposure). (d) Beam size 
inside the propagation medium (near the focal plane of L1) versus input pulse power. (e) The standard deviation 
of �k⊥� taken from (a–c) has been used to calculate the standard deviation of divergence 〈θ〉 of the beam as a 
function of the input power at a distance d from reference z = zf = 0 (first-order approximation). (f) Calculated 
imaged beam size in the far-field versus the input pulse power (first-order approximation).
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plane ( zR,i ∼ 0.745 mm ), which were re-estimated by a knife edge technique in the linear regime. Accordingly, 
a shift of the effective linear magnification MA ∼ −0.67 is observed (compared to MA0 ∼ −0.5 ). Notably, wi , 
zR,i and |MA| increase when the focal plane is located closer to the output window of the cuvette in comparison 
to locations near the input window, because linear refraction affects the radius of curvature of the beam inside 
the examined medium23.

A pinhole (15 μm in diameter) was positioned approximately at the imaged focal plane formed after L2, 
when the cuvette was filled with water. The pinhole was placed at a motorized translation stage, which allowed 
fine adjustments over the beam propagation direction. The portion of beam that passes through the pinhole 
was collected by a photodetector. A neutral density filter was placed before the pinhole to attenuate the light 
intensity. The size of the pinhole allowed only a very low signal to pass through. On that account, the photode-
tector was connected to a lock-in amplifier for sensitive measurement of the generated output signal voltage. 
A variable attenuation of the beam was set by a combination of a half-waveplate and a polarizer. A motorised 
rotational stage allowed controlling of the waveplate by a personal computer, which was used to automate the 
measurements collected by the lock-in amplifier. Data were collected for each input power value and averaged 
over 10 laser shots. For each mean value of the data points, the standard deviation was calculated to estimate the 
statistical error. The measurement uncertainties presented in Table 1 are conservatively estimated to 20%, which 
include absolute uncertainties in P , due to laser energy fluctuations, pulsewidth, M2 and γ value uncertainties, 
and relative uncertainties in the determination of Pcr.

For the measurements of the 1/e2 beam width in the far-field as a function of input pulse power, a knife edge 
technique was used. For the measurements of the relative spectral broadening �ω/ω0 presented in Fig. 3, we 
have replaced the pinhole and the detector shown in Fig. 5 with a fiber spectrometer and appropriate neutral 

Figure 5.   The optical power limiter experimental setup. A combination of a half-waveplate and a polarizer are 
used to control the power of the laser pulses. Two positive lenses are used to focus the beam on the sample and 
image onto the apertured (by a 15 μm pinhole) photodetector. The setup has been modified by placing a pinhole 
on a motor stage to allow translation towards z coordinate.

Figure 6.   Conceptual diagrams used for calculation of the beam size at the imaging (far-field) planes. (a) 
Τhe correspondence of focal and imaging planes so that the linear magnification of the system MA remains 
invariant. (b) A diagram that shows how the beam size wi,0 at a distance d in the far-field shifts to wi when 
accounting for the power dependence of the divergence θ.
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density filters to collect the far-field spectrum of the pulse after propagation in water. We followed the method-
ology reported in12 so that �ω = ωb − ωr , where ωb and ωr stand for the maximum broadening towards bluer 
and redder frequencies respectively. The latter are recorded at the frequencies where the signal drops below the 
detection threshold, which we identify as 10% of the average baseline fluctuations (each measurement has been 
averaged over 10 shots). As reported in9, the selected signal level shall not change the result since the signal drops 
abruptly at the anti-Stokes wing. We further note that the apparatus cut-off on the red side (Stokes broadening) 
was at ~ 890 nm, possibly leading to an underestimation of the relative spectral broadening at high input powers 
(e.g. in Fig. 3, for P > 8 MW). Nonetheless, we note that beyond that power, no significant further broadening 
occurs at the anti-Stokes wing for water. Besides, the idea of this approach was to quantify (with some uncer-
tainty) the abstract definition of supercontinuum generation as the dramatic increase of the pulse spectrum 
when transmitted through the medium12.

Theoretical.  Numerical model.  We used a theoretical model for the propagation of femtosecond laser 
pulses inside water (the most studied liquid medium of the above two)24. For a pulse propagating along the z 
axis, whose reference time frame moves at the group velocity ug , the coupled system of differential equations that 
give the complex scalar envelope of the electric field ̂E(r,ω, z) = F{E(r, t, z)} (written in Fourier space, where 
F{} stands for the Fourier transform, r is the radial coordinate, ω is the radial carrier frequency, t  is the retarded 
time) and the electron density ρ(r, t, z) , reads

where ω0 , k0 is the pulse central frequency and central wavenumber respectively, k(ω) = ω
c n(ω) , n(ω) is the 

linear refractive index of water25, �⊥ is the transverse Laplacian, κ(ω) = k0 − ω/ug , n2 = 2.1× 10−20m2/W is 
the experimentally evaluated nonlinear refractive index, β(K) = 1× 10−47cm7W−4 is the multiphoton absorp-
tion cross section of water, K = 5 is the required number of simultaneously absorbed photons of energy ℏω0 
( ℏ is the reduced Planck’s constant) to exceed the ionization potential of water Ui = 6.5eV , T = 1+ i

ω
∂
∂t is the 

self-steepening operator, ρc = ε0meω
2
0/e

2 is the critical plasma density ( ε0 is vacuum’s dielectric permittivity, 
me is the electron’s mass and e is the elementary electric charge) and ρint = 6.68× 1022cm−3 is the density of 
neutrals in the medium.

The initial conditions that are given to start propagation and match the experimental conditions, correspond 
to a Gaussian envelope distribution

In this relation, w0 = 77 µm (experimentally evaluated) denotes the input beam radius at the entrance of 
the cuvette, Pin is the input peak power of the pulse, tp is the pulsewidth (related to the FWHM pulsewidth via 
tFWHM = tp

√

2log(2) ), R = f −
z2R,f
f  is the radius of curvature, f = n0 × 5 mm is the axial distance that the beam 

waist is formed in the cuvette with respect to the entrance window and zR,f = n0 × 1.68 mm is the experimentally 
evaluated Rayleigh distance, where n0 is the refractive index of the medium at the central frequency (taken as 
1 for air and 1.33 for water). To account for the effect of imperfect beam quality, we have multiplied the range 
of wavelengths � with the experimentally evaluated factor M2 = 1.4 , a transformation that can be used within 
the paraxial approximation to estimate time integrated quantities, where phase effects are of no consequence26.

Beam size at the focal and at the imaging (far‑field) planes.  We evaluated the input power dependence of the 
beam size at the examined z coordinates near the focal plane of L1 inside the propagation medium. To do so, we 
solved Eqs. (3) and (4) and we integrated the solutions in time, to determine the fluence of the pulse at a given z, 
and subsequently we calculated the beam size according to the second moments definition. Next, we evaluated 
the far-field distribution of the electric field amplitude S(t, k⊥) by performing a Hankel transform at the exam-
ined z-coordinates. The latter is a good approximation of the Fresnel–Kirchhoff integral, accounting for a plane 
of observation at a distance d ≫ wf  , where wf  denotes the beam waist at the focal plane of L1.

Observation planes near the focal and imaging planes.  The observation planes at zf ± zR,f  (around the focal 
plane of L1) are located d0 ∓ zR,f  away from L2, where do is the distance from the focal plane of lens L1 to 
lens L2 itself (Fig. 6a). Therefore, since zR,f = zR,i/(MA)2 , the corresponding imaging (far-field) planes should 
be located at a distance di ∓ zR,i × |MA|−1 apart from L2, so that the linear magnification of the system 
MA = −di/d0 remains consistent. In other words, the observed electric field amplitude distributions at planes 
z = zi ∓ zR,i × |MA|−1 (i.e., at di ∓ zR,i × |MA|−1 away from L2) are equivalent to the ones calculated by the 
Hankel transform of the electric field amplitude distributions at planes z = zf ± zR,f  (i.e., at d0 ∓ zR,f  behind 
L2).

Imaged (far‑field) beam size calculations.  The power-dependent divergence θ over the divergence θ0 in the lin-
ear regime, quantifies the imaged far-field beam size change with respect to the linear regime, because wi

wi,0
∼=

θ
θ0

 , 

(3)
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where wi,0 is the imaged far field beam size if θ = θ0 (Fig. 6b). Considering the magnification of the optical sys-
tem MA in the linear regime, it holds wi,0 = MA× wf  . Thus, the imaged spot size can be estimated as

Finally, we estimated the beam size at planes zi ± zR,i × |MA|−1 starting from

Applying the paraxial equation w(z) =
√

1+ (z/zR)
2 for zf ± zR,f × |MA|−1 and for zf ± zR,f  , we find:

We used Eqs. (5) and (6) to plot Fig. 4f, where we have used data shown in Fig. 4e so that σ�θ� → θ .
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