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Abstract: In this article, we present a multiperiodic nano­
hole array structure for improved sensing. The structure 
consists a series of rows of nanoholes, each having a dif­
ferent period in an ascending order. A monochromatic 
source illuminates the structure, and a resonance condi­
tion is met for the row having a momentum matching Bloch 
wave, which leads to extraordinary optical transmission. 
With this new plasmonic structure, the sensing signal can 
be retrieved using the spatial position of the transmission 
maxima. This setup requires a simple optical setup while 
achieving increased resolution and accuracy. A resolution 
of 4.6 × 10−6 refractive index units is achieved, which is 
comparable to surface plasmon resonance system based 
on the Kretchmann configuration.
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length structure; surface waves.

1  �Introduction
Ever since nanohole arrays were shown to exhibit extra­
ordinary optical transmission [1] and were used for sensing 
[2], there has been a considerable amount of research done 
to demonstrate their potential as biomedical diagnostic 
tools. This type of sensor is particularly well suited for 
highly multiplexed sensing, as the arrays can easily be inte­
grated in an imaging system, taking advantage of linear col­
limation. This leads to the possibility of building a compact, 
low-cost, and fully integrated device that can achieve mul­
tiple detections using a lab-on-a-chip device [3]. But early 
demonstrations of sensing using those devices showed 

several challenges [4], particularly in terms of resolution, 
which ranged between 1 × 10−4 and 1 × 10−5 refractive index 
units (RIU) [5–9], compared to analogous devices based on 
surface plasmon resonance (SPR), which typically range 
at 1 × 10−6–1 × 10−7 RIUs. A number of authors have imple­
mented different strategies in order to improve the resolu­
tion of the device, such as crossed polarizers [10], Bragg 
mirrors on the edges of the holes [11], different shapes such 
as double-hole arrays [12] or elliptical holes [13], dual peri­
odic system [14, 15], or dual wavelength system [7, 16], or 
used a different collimation angle [17]. Even with all these 
methods, most works on nanoholes arrays still rely on 
simplistic interrogation methods like a wavelength inter­
rogation via a spectrometer [9, 18–20] or direct intensity 
measurements [21–24].

If we look at typical SPR sensors based on the Kretch­
mann configuration, usually three types of interrogation 
[25] are used. The first one, an intensity scan at a fixed angle, 
measures the difference in intensity of the reflected mono­
chromatic light after a change in refractive index. It is done 
at a specific angle, which leads to SPR. A wavelength scan 
consists of measurements of the reflection of polychromatic 
light at a specific angle and uses the position of a maxima or 
minima of the spectrum for sensing. The angular scan uses 
the measurements of reflected light of a single wavelength 
at different angles around the angle of resonance and also 
uses a minima as the sensing signal. As was pointed out 
by a theoretical analysis of SPR sensor’s performances 
[26], these two last interrogation methods usually lead to 
better performances, as the signal is not affected by corre­
lated type noise. The angular scan is usually the method of 
choice, as it allows for a simpler optical setup. For nano­
hole-array-typed sensors, the picture is quite different, as 
the resonance is usually achieved using a linear collima­
tion optical system. Angular scans are never used, and the 
systems rely on an intensity or wavelength interrogation.

2  �Approach and experimental setup
In this paper, we present a fourth type of interrogation 
method, which consists in a scan of the hole array 
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periodicity, as illustrated in Figure 1. As the mecha­
nism of the coupling of incident light to surface waves 
relies on the diffraction of light by the array, changing 
the period will lead to a change of the diffracted light’s 
wavevector. Obtaining the spatial intensity profile of 
the transmitted light for a structure with incremental 
increases of the period results in a wavevector scan, just 
like an incremental change of the wavelength or of the 
incident angle would. The optical setup used for this 
sensing device remains a very simple monochromatic 
microscope with high acquisition frequency and retains 
the capacity for high multiplexing.

The structure consists of circular hole arrays with a 
period varying from 500 to 600 nm with an increment of 
1 nm and diameter of 165 nm, as shown in Figure 2. The 
dimensions of the holes were optimized using the ana­
lytical formalism of coupled mode theory [27, 28] in order 
to improve the quality factor of the resonance peak. 
The increment as well as the spacing of the hole in the 
y direction, thus the ascending periodicity, was chosen 
in order to retrieve a satisfactory resonance profile on the 
camera at the chosen magnification, which allows mul­
tiple sensors to be monitored at the same time. The scan­
ning electron microscope image shows the hole array, 
with the spacing in the y-axis fixed at 700 nm. An optical 
microscope image in the inset of that figure shows the 
spatial dependency of the resonant conditions of the 
array, which follows the period of each line. The sample 
thus acts as its own monochromator, with the wave­
length of transmission/reflection being associated with 

a single line. The hole array was fabricated using E-beam 
lithography (Raith GmbH E-Line Plus, Dortmund, North 
Rhine-Westphalia, Germany) in a lift-off process [29]. 
The gold layer of 100 nm was deposited using an e-beam 
evaporator with a 2-nm Chrome adhesion layer. A poly­
dimethylsiloxane microfluidic chip with three channels 
was used to deliver the solutions to the 3 × 3 sensor array. 
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Figure 2: Images of the array.
(A) Reflection image of the multiperiodic nanohole array under white 
light illumination, using crossed polarizers. The sample reflects a 
different color, which is dependent of the periodicity. (B) SEM image 
of the nanohole array with a 1-nm increment changing period (the 
total sample goes from 500 to 600 nm) in the x-axis and a 700-nm 
period in the y-axis. The hole size is 180 nm, and the thickness of 
the gold film is 100 nm.
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Figure 1: Schematic of the nanohole array structure and working principle.
(A) Multiperiodic nanohole array. Each column has a periodicity equal to d0 + mΔd, where d0 is the initial period, m is the number of the 
column, and Δd is the increment. (B) The transmission image of the structure at a single wavelength will exhibit a bright fringe for a column 
with periods that match the resonant condition of the array. Changing the refractive index will move the fringe, and the position of the 
maxima gives the sensing signal.
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The sensor assembly was fixed to a rotary stage in order 
to align the samples with the beam.

The optical setup for sensing consists of a 785-nm 
laser diode source (Thorlabs Inc., Newton, NJ, USA) on 
a diode temperature controller (Newport Corporation, 
Irvine, CA, USA), which goes into a spatial filter (Newport 
Corporation, Irvine, CA, USA) towards the nanohole array 
sensors as illustrated in Figure 3. Light is collected via a 
microscope using a 15×  microscope objective (Nikon) and 
a camera (Q-Imaging Corporate, Surray, British Columbia, 
Canada). The signal was analyzed in a Labview interface. 
A detection window was set around the transmission 
maxima of the sample, and the intensity was recorded 
as a function of the spatial position in the x-axis, using 

a summation in the y-axis. The signal was recorded as 
a function of time, and the position of the maxima was 
determined using the centroid method. It should be noted 
that the resolution of the system depends on the magni­
fication, which, in counter parts, limits the multiplexing 
capabilities of the device.

3  �Results and discussion
In order to test the performances of the device, a sen­
sitivity measurement as well as a real-time test of the 
limit of detection (LD) was performed. The sensitivity 
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Figure 4: Sensitivity measurements.
Transmission image of the multiperiodic nanohole array sample with (1) water and (2) ethanol as the surrounding medium.  
(B) Top Measured transmission profile of the images of the arrays. The intensity was integrated along the y-axis and plotted as a function of 
the x-axis. Bottom: Transmission intensity of the nanohole array as a function of the period as calculated using coupled mode theory.
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Figure 3: Optical setup and microfluidic chip.
(A) The optical setup consists of a homemade microscope with a monochromatic laser diode source, a spatial filter, and a polarizer. The 
microscope objective was 25×. (B) The polydimethylsiloxane microfluidic chip with three parallel channels.
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was measured by taking two images of the transmission 
image of the multiperiodic array with solutions of dif­
ferent refractive index, namely, water (1.3296 [30]) and 
ethanol (1.3577 [31]). The difference in the position of the 
maxima was determined to be at 38 pixels on the camera, 
as shown in Figure 4A. As the extent of the 70-μm sample 
on the camera was at 300 pixels and that every line had 
a distance of 0.7 μm and represented a shift of 1  nm of 
periodicity from one another, we can conclude that the 
sample’s sensitivity was S = 1352 px/RIU = 450.7  nm/
RIU. Coupled  mode theory [27, 28] was used in order to 
model the optical properties of the arrays as a function 
of the array period and to optimize the dimensions of the 
nanohole array. The transmission spectrum is given in 
Figure 4B, with a theoretical sensitivity of 462.6 nm/RIU, 
which is very similar to the one measured.

The LD of the system was measured by alternating 
solution from water to a small concentration of ethanol 
(2%). The position of the maxima was recorded as a 
function of time using the centroid method. The sensing 
signal was temporally averaged to obtain one point every 
second. The LD of the systems corresponds to the small­
est measurable minimal increment of refractive index 
that was detectable by the system, which we represent 
using LD = ,

SNR
n∆  where Δn is the refractive index change 

used in the experiment and SNR is the signal-to-noise 
ratio recorded. The noise was obtained using the stand­
ard deviation of the signal on a flat portion of the signal. 
For a change of refractive index of 5.6 × 10−4 RIU, the SNR 
recorded was 122.7 for an LD of 4.6 × 10−6 RIU. This is con­
sistent with the LD obtained using the sensitivity and the 
noise level (σ) of the system (LD = σ/S), which, if we look 
at the inset in Figure 5, can be evaluated to about 0.01 px.

4  �Conclusion
The use of a multiperiodic nanohole array accounts for 
several advantages compared to multiplexed devices 
using a simple intensity measurement. First, as the signal 
relies on the position of a maxima, the monitoring of a 
change in refractive index will be directly accountable for 
the change in the resonant property of the system. This is 
important when we consider that the signal is obtained 
via transmission, which is susceptible to spurious noise 
by absorption in the sensing medium itself and by any 
contaminants in the solution or air bubbles. The result­
ing sensor is improved not only in its performances by 
reducing spurious noise and correlated noise (such as 
source noise) but also in accuracy. It also improves the 
multiplexing capabilities compared to systems using a 
wavelength interrogation measurement, as these systems 
either slow down greatly the acquisition rate by dividing it 
by the number of sensors or can only use one dimensional 
images, as the other dimension is used for the grating 
of the spectrometer. We thus believe that this new struc­
ture might become reliable in order to accomplish high-
resolution multiplexed sensors.
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Figure 5: Limit of detection measurements.
Real-time measurements of the position of the resonance maxima 
for different concentration of ethanol in water.
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