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Abstract
A new approach for the analytical model of n+ υ n+ devices is developed to
express the effects of space–charge-limited current and high field carrier
mobility saturation. The analytical solution is compared with a complete
numerical resolution and successfully applied to experimental results. We
show that laser-diffused resistors, fully compatible with modern CMOS
processes, are well described by our analytical model up to high current
density levels.

1. Introduction

The current density versus voltage J–V relation of n+ υ n+
or p+ π p+ devices has been extensively studied in the past
[1–6]. Most models use the drift current approach with
injected and intrinsic charge carriers but no simple analytical
J–V relation has been introduced. The goal of this work is
to develop a simple analytical current density versus voltage
relationship for 1D trap-less n+ υ n+ or p+ π p+ silicon devices.
Previous studies only give sets of relations under various
asymptotic conditions [1, 6]. With our approach, we have
successfully obtained a direct current density versus voltage
relation that can be used to describe the electrical behaviour
of the laser-diffused resistors that we recently introduced.
The effects of carriers’ mobility saturation and space–charge-
limited currents are included in the model.

The theoretical model is summarized in section 2 and the
analytical solution with its approximations is then discussed.
The hypothesis made in regard with the dimensions of our
laser-diffused resistors and the voltages used are validated
by a complete numerical solution. The model is then
successfully applied to experimental results and the physical
meaning of the calculated model’s parameters is discussed in
section 3.

2. Theoretical model

2.1. Model’s ground

For simplicity, let us consider a 1D n+ υ n+ structure.
Single carrier transport can be described by the drift-diffusion
equation where the diffusion current is ignored by a field-
dependent mobility expression based on the Canali et al
model [11]. An impurities’ concentration-dependent low-field
mobility model was also used [12]. Mobility saturation is
implicitly assumed since important electric fields are applied
on small integrated circuit geometries, as for laser-diffused
resistors. Electric fields of the order of 104 V cm−1 are
easily encountered in the conduction regimes of CMOS
microelectronics devices of sub-micron dimensions. The
charge-trap density is considered small enough to be ignored
and current continuity is implied (dj/dx = 0):

J = nq
µ0E

1 + |E/EC | , (1)

where EC expresses the electric field necessary to observe
mobility degradation and µ0 the low-field mobility. At low
applied electric field E, we observe an ideal Ohmic relation.
By combining this equation with Poisson’s equation, where all
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Figure 1. Current–voltage (I–V) plots of the analytical
approximation (line) and numerical solution (crosses) of
equation (3) for a typical laser-diffused resistor: (A) ND = 5 ×
1018 cm−3, L = 0.6 µm and (B) ND = 1 × 1018 cm−3, L = 1.7 µm.

(This figure is in colour only in the electronic version)

the impurities ND are ionized (at room temperature), we obtain
the differential equation

J = q

(
ND − ε

q

d

dx
E

)
µ0E

1 + |E/EC | . (2)

We then make the ‘virtual cathode approximation’ [1] that
stipulates that the electric field is equal to 0 at x = 0 and a
transcendent solution is obtained by integrating the differential
equation (2):

−ĵ x̂(1/ĵ − 1)2 = (1/ĵ − 1)ê + ln(1 − (1/ĵ − 1)ê), (3)

where we have used the following dimensionless variables:

ĵ ≡ J

qNDµ0EC

, (4a)

ê ≡ E/EC, (4b)

x̂ ≡ −xNDq

ε · EC

. (4c)

In the past studies, the solution presented in (3) was
investigated only in certain asymptotic conditions because of
its nature and of the complexity of its numerical resolution.
Unfortunately, most of the current–voltage (I–V ) plots of a
typical laser-diffused resistor are within the transition between
pure Ohmic conduction and the effect of mobility degradation
and space–charge-limited current. This transition cannot be
only evaluated in asymptotic conditions.

2.2. Numerical evaluation of the solution

In order to justify the approximations that were made
in the development of our analytical model, our solution
was compared with a complete numerical resolution of the
equation (3). Figure 1 shows the superposition of the two
approaches for two extreme cases of laser-diffused resistors’
parameters. The goal of this numerical resolution was to
find the roots of the transcendent equation (3) by a numerical

algorithm and then to evaluate the applied voltage from the
space distribution of the electric field.

The numerical solution was performed using a
combination of the Steffenson’s algorithm and Newton’s
method [13]. The Newton method was used to determine
successively the roots ê of equation (3) numerically for a
large number of given x and ĵ . As a result we obtained, for
each current density ĵ , the dimensionless electric field spatial
distribution. The current–voltage (I–V ) plot was then obtained
by successive numerical integrations of the smoothly varying
electric field over x using the Clenshaw–Curtis quadrature
method for as many points in ĵ as were needed. Extremely
good agreement between the two approaches can be observed
which justifies the approximations made and the use of the
simplified analytical solution for this model.

While a numerical approach could be used in most
result analyses, it is rather cumbersome and lacks flexibility.
To obtain the analytical solution, we did the following
approximations.

2.3. Mathematical approximation

Since for a positive applied voltage V, the values of J, E and
EC are all negative. The expression

−ĵ x̂(1/ĵ )2 (5)

is always negative for all values of x̂ and ŷ. Since the
logarithmic term will always dominate the right-hand side
of equation (3) for typical values of ĵ and ê we can then
approximate our transcendent solution by

−ĵ x̂(1/ĵ − 1)2 ≈ ln(1 − (1/ĵ − 1)ê). (6)

It is now possible to express our dimensionless electric field
as a function of the current density and hence find the applied
voltage by integration over the device’s length L:

V = E2
Cε

NDq

−ĵ 2

(ĵ − 1)3

{
exp

(−x̂L

ĵ
(ĵ − 1)2 − 1

)

+
x̂L

ĵ
(ĵ − 1)2 − 1

}
(7)

where

x̂L ≡ −LNDq

εEC

. (8)

We can even further obtain a simplified current density versus
voltage relation by neglecting the exponential term (since the
argument is often negative for diffused resistor’s dimensions):

V ≈ E2
Cε

NDq

−ĵ 2

(ĵ − 1)3

{
x̂L

ĵ
(ĵ − 1)2 − 1

}
≡ E2

Cε

NDq
v̂. (9)

The device resistance can also be calculated from relation (9):

R =
∣∣∣∣dV

dI

∣∣∣∣ =
∣∣∣∣ E2

Cε

NDq

1

Aqµ0NDEC

∣∣∣∣ ·
∣∣∣∣dv̂

dĵ

∣∣∣∣
≈ −ECε

AN2
Dq2µ0

{
ĵ 2(x̂L − 1) − 2ĵ

(
x̂2

L + 1
)

+ x̂L

(ĵ − 1)4

}
. (10)

The resistance at zero applied voltage is coherent with Ohm’s
law:

R(ĵ = 0) = L

qNDAµ0
. (11)
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Figure 2. Schematization of the 1D model applied to the geometry
of a laser-diffused resistor.

3. Experimental results

The use of laser beams to form connections between highly
doped diffusion regions has been introduced and investigated
in past studies [7, 8]. Diffused resistors can be made with
very precise nominal resistance values by an iterative process
[9, 10]. A high energy laser beam is focused between the
source and drain of a gateless MOSFET device. The impurities
can then diffuse easily in the illuminated melting silicon
region, therefore creating a resistor with a very linear current–
voltage (I–V ) behaviour for typical microelectronics’ voltages
(below a few volts). The device created can be modelled, in
terms of transport behaviour, by an n+ υ n+ or p+ π p+ diode
depending on the doping type [2, 6].

Once the impurities have diffused into the gap and the
molten silicon has cooled down, the device presents an
n+–n–n+ or p+–p–p+ structure with non-abrupt junctions
(figure 2). By varying the laser parameters, highly precise I–V
curves can be obtained from pulse to pulse. The somewhat
simple 1D model presented in section 2 gives good results to
evaluate the transport behaviour of the devices created.

Our experimental results were obtained with on-chip
laser-diffused resistors of nominal gap between 0.6 µm and
1.4 µm. Four wire electrical measurements where performed
on the samples in a Faraday cage at room temperature. The
current–voltage (I–V ) curves were evaluated up to 7.5 V,
the maximum applicable voltage on our test chip before
breakdown. The model described in section 2 was applied
to fit the experimental curves with only ND and EC as free
parameters. Figure 3 shows the agreement between the
experimental data and the fitted model. The three fitted curves
give values of ND between 1 × 1018 cm−3 and 5 × 1018 cm−3

which correspond to the expected level of impurities in the
melted region (N+ or P+ impurities concentrations in the order
of 5 × 1019 cm−3). Values of EC are slightly higher than the
crystalline value, probably because the diffused region is partly
poly-crystalline.
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Figure 3. Current–voltage (I–V ) plot of the experimental data
(crosses) and fitted model (line) for three typical laser-diffused
resistors of parameters: (A) R = 500 �, ND = 1.45 × 1018 cm−3,
L = 0.6 × 10−4 cm; (B) R = 1 k�, ND = 5.02 × 1018 cm−3, L =
1.0 × 10−4 cm and (C) R = 1.5 k�, ND = 2.66 × 1018 cm−3,
L = 0.6 × 10−4 cm.

4. Conclusion

Experimental data and numerical resolution have
demonstrated that a simplified analytical solution of the
1D trap-less n+ υ n+ or p+ π p+ diode model gives good
results for modelling the transport behaviour of laser-diffused
resistors for modern microelectronics. This demonstration
was based on a complete numerical resolution of the initial
equation and the application of the analytical solution on
experimental data from fabricated on-chip resistors.
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