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Abstract. We consider processes in which a focused laser beam is used to induce the melting
of silicium. The first goal of this paper is to propose a simple three-dimensional (3D) model of this
melting process. Our model is partly based on an energy balance equation. This model leads to a
nontrivial ODE describing the evolution in time of the dimension of the melt region. The second goal
of this paper is to obtain approximate analytical solutions of this ODE. After using basic solution
methods, we propose an original geometrical method to derive asymptotic solutions for time → ∞.
These solutions turn out to be the most useful for the description of this process.
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1. Introduction. Focusing an energetic pulsed photon beam on a material usu-
ally leads to a localized heating, possibly followed by atomic vaporization and even by
an ejection of materials, a process called ablation [5]. All these mechanisms contribute
to the dissipation of the laser beam energy into the materials. The time and spatial
distribution of these dissipation phenomena depend on the localized heat source pa-
rameters and on the materials’ properties. In this paper, we assume that the beam
does not cause any ablation and that all the incoming energy is dissipated into heat,
which leads to a local increase of temperature and to a melt region. The object of
this study is the time evolution of the melt region size.

In general, these heating and melting effects constitute a three-dimensional (3D)
heat flow problem usually solved numerically [4]. An analytical solution, even ap-
proximate, is very interesting because it allows analyzing the influence of the various
physical parameters involved. Actually, simplifications to a one-dimensional (1D)
heat flow problem have been proposed by many authors [9], [7], [6] for the case of a
large beam dimension when compared to the heat diffusion length. However, for a
long pulsed focused beam with beam dimension comparable to or smaller than the
melt depth, the lateral heat flow is on the same order of magnitude as the perpendic-
ular component. It follows that the 1D approximation is no longer valid. Nonlinear
boundary conditions arising from a moving solid-liquid interface make exact analytical
solutions of the 3D heat flow equation very difficult.

In this paper, we present a simplified 3D model based on an energy balance
equation. This model was first introduced in [3] with a brief justification and with an
emphasis on the comparison with experimental results. In this paper, our first goal is
to present a complete derivation of this model (section 2), with an emphasis on the
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nature of the approximations used. Our model leads to an ODE that describes the
evolution in time of the dimension of the melt region for a material irradiated by a
focused laser beam. The second goal of this paper is to obtain approximate analytical
solutions of this ODE. In section 3, we analyze this ODE in detail using classical
analytical and numerical methods. In sections 4 and 5, we derive asymptotic solutions
for t → ∞, using a possibly original geometrical method. Finally, in section 6, we
compare the accuracy of the approximate solutions.

2. The model. Our model is based on four main hypotheses that we present
and justify in the following.

2.1. Hypothesis A: The focused laser beam can be treated as a point
heat source. In this paper, we assume that the laser beam is orthogonal to the flat
material surface. A focused laser beam is most often characterized by a Gaussian
curve of width r0. The light intensity varies according to I(r) = I0 exp(−(r/r0)

2),
where r is the distance from the beam center in a direction perpendicular to the beam.
The heat diffusion characteristic length scale for a material of heat diffusivity D is
usually defined by d(t) =

√
D t. d(t) is an estimate of the heat front penetration

depth at time t, assuming that the laser is turned on at t = 0.
A 1D model of the heating process is obtained if r0 >> d. In this limit, the beam

radius can be regarded as infinite. For an isotropic material, the resulting isothermals
are planes which are perpendicular to the laser beam. If the beam is perpendicular
to the flat material surface, then the isothermals are planes which are parallel to this
surface.

A 3D model of the heating process is obtained if r0 << d(t). Photons entering
a material are absorbed progressively. It follows that the light intensity within the
material decreases according to an exponential law (Beers’s law) characterized by a
penetration depth � (the inverse of the absorptivity). We develop our model of the
heating process in the point source approximation framework, where both r0 and �
are much smaller than the diffusion length, i.e.,

{
r0 <<

√
D tp and

� <<
√
D tp,

(2.1)

where tp is the pulse width and d(tp) =
√
D tp is the diffusion length. We emphasize

that the point source approximation (2.1) implies that our model is not expected to
be valid or accurate for t ≈ 0.

2.2. Hypothesis B: Heat losses at the surface of the melt domain are
negligible during the whole melting process. Heat losses occur through two
interfaces: the flat upper surface of the melt domain and the liquid-solid interface. In
this section, we compare the magnitudes of these heat losses.

On one hand, it is a well-known experimental observation that the flat surface
of the liquid domain has approximately the shape of a disk. On the other hand,
the liquid-solid interface is a surface which is attached to the circumference of this
disk. During the melting process, this surface is symmetric with respect to an axis
going through the point heat source in the direction perpendicular to the solid-air
plane. This symmetry implies that the area A of the liquid-solid interface can be
expressed solely as a function of the disk radius r, i.e., A = A(r). If we assume
that the liquid-solid interface is not flat, then its area A(r) will be at least as large as
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the area of the disk, i.e.,

π r2

A(r)
≤ 1(2.2)

for r > 0.
Let us consider the ratio of the heat diffusion losses through these two surfaces.

This ratio is R =
Jliquid/air

Jliquid/solid
, where Jliquid/air and Jliquid/solid are the heat fluxes

through each interface. We use{
Jliquid/air = κair π r2 ‖ ∇Tair ‖,
Jliquid/solid = κsolid A(r) ‖ ∇Tsolid ‖,(2.3)

where (κair, κsolid) are the heat conductivities of the air and of the solid, respectively,
and (‖ ∇Tair ‖, ‖ ∇Tsolid ‖) are the magnitudes of the temperature gradients at the
liquid surface in the air and in the solid, respectively. Using (2.3), the ratio R takes
the form

R =
π r2

A(r)

κair

κsolid

‖ ∇Tair ‖
‖ ∇Tsolid ‖ .(2.4)

If the solid and the air are at the same temperature initially, then we expect the
temperature gradients at both interfaces to have similar magnitudes during the whole

melting process, i.e., ‖∇Tair‖ ≈ ‖∇Tsolid‖, and therefore R ≈ π r2

A(r)
κair

κsolid
. The in-

equality (2.2) then implies that R has an upper bound:

R ≤ κair

κsolid
.(2.5)

In general, the heat conductivity of gases is typically 100 times smaller than for solids,
and therefore (2.5) implies that R < 1/100. Consequently, it seems reasonable to
neglect heat losses in the air during the melting process. This kind of approximation
has been discussed in the literature by Wood and Geist [8], who also took into account
convection in the air and radiations.

2.3. Hypothesis C: The melt domain is hemispherical. We shall see that
this hypothesis is essentially a consequence of the hypotheses A and B. We assume
that the following three conditions are satisfied: the solid material is isotropic; the
heat source is a point source (hypothesis A); the surface of the melt domain is effec-
tively a thermal insulator (hypothesis B). It follows from these hypotheses that the
temperature distribution has a spherical symmetry, i.e., that T = T (r), where r is the
distance from the point source.

The existence of a spherical symmetry can be understood by comparing our prob-
lem with another similar problem. Consider a point heat source within an infinite
isotropic solid material, instead of a semi-infinite material. In this case, the temper-
ature has obviously a spherical symmetry. Moreover, this symmetry implies that the
heat flux going through an arbitrary plane containing the point heat source vanishes
at each point of this plane. It follows that the problem with a spherical symmetry
has exactly the same boundary condition (i.e., zero heat flux along a plane containing
the source) as our problem in a semi-infinite material. For this reason, we expect the
two problems to have the same symmetry.

Convective flow driven either by buoyancy or surface tension does not have enough
time to develop for durations shorter than 1 µs, which is the laser pulse width in our
application [1]. It follows that convection does not break the spherical symmetry.
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Spherical symmetry implies that the isothermals are hemispherical. The liquid-
solid interface, which is an isothermal, is therefore hemispherical.

2.4. Hypothesis D: Everything happens as if the heat flux at the sur-
face of the melt region was transported instantaneously to the solid-liquid
interface. In this section, we estimate the heat flux which crosses the liquid-solid in-
terface. During a fixed time interval τ , the laser releases a constant quantity of energy
which is absorbed at the top surface of the melt domain. This energy is used to heat
the melt fluid, to melt a hemispherical shell of solid, and to heat the solid via diffusion.
The thermal energy is transferred to the liquid-solid interface via conduction in the
melt phase (convection being negligible).

In the framework of the Stefan problem [2], the energy density balance during a
time lapse dt is evaluated at the moving liquid-solid interface (Figure 2.1):

jin dt = jout dt + L dr,(2.6)

where jin is the heat flux that reaches the interface inside the melt fluid, jout is the
heat flux diffused into the solid at the liquid-solid interface, and L dr is the heat flux
used to melt a region of solid of depth dr.

We integrate the energy balance equation (2.6) over the hemispherical shell of
radius r and divide by dt to obtain the heat transfer rate balance∫

interface

jin dS = jout 2πr2 + L
dr

dt
2πr2.(2.7)

According to hypothesis B, we neglect heat losses in the air. It follows that the heat
transfer rate

∫
interface

jin dS is the power provided by the laser (that we denote by P )

minus the power used to heat the melt fluid (that we denote by dEh

dt ):∫
interface

jin dS = P − dEh

dt
.(2.8)

Substituting (2.8) into (2.7) yields

P = jout 2πr2 + L
dr

dt
2πr2 +

dEh

dt
.(2.9)

We approximate jout by the linearization

jout = −κs

(
∂T

∂r

)
r=rm

≈ κs ∆sT

ξ
√
D t

,(2.10)

where κs is heat conductivity of the solid phase, rm is the radius of the melt region,
∆sT ≡ Tm − Ts, Tm and Ts are the silicium fusion temperature and the solid silicium
temperature far from the melt region, respectively (Ts equals the room temperature
Troom), D is the thermal diffusivity in the solid at the fusion temperature Tm,

√
D t is

the heat diffusion characteristic length scale of the solid, and ξ is a geometry dependent
constant usually fixed to 1.

The energy used to heat a hemisphere of melt solid satisfies

dEh

dt
= c�

2

3
π r3 dT�

dt
,(2.11)

where c� is the liquid silicium specific heat and T� is the mean temperature of the
liquid silicium.
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Substituting (2.10) and (2.11) into (2.9) leads to the energy transfer rate balance
equation

P =
κs ∆sT

ξ
√
D t

2πr2 + L
dr

dt
2πr2 + c�

2

3
π r3 dT�

dt
.(2.12)

We will now compare the magnitude of the three terms⎧⎪⎪⎨
⎪⎪⎩

Pdiffusion = κs ∆sT

ξ
√
D t

2 π r2,

Pmelting = L dr
dt 2 π r2,

Pliquid heating = c�
2
3 π r3 dT�

dt .

(2.13)

In the second and third equations of (2.13), the instantaneous rates dr
dt and dT�

dt are
unknown a priori. However, the average rates can be estimated. For a time lapse τ , the
average rates are defined by dr

dt |mean = r/τ and dT�

dt |mean = ∆�T
τ . In this problem, the

laser beam power is constant and the size of the melt pool grows with time. Because
the volume to heat increases as time passes, we expect both dr/dt and dT�/dt to
decrease with time, i.e., to have negative second derivatives. This implies that the
average rates are larger than the instantaneous rates. Substituting the average rates
into (2.13) yields ⎧⎪⎪⎨

⎪⎪⎩
Pdiffusion = κs ∆sT

ξ
√
D t

2 π r2,

Pmelting ≤ L r
τ 2 π r2,

Pliquid heating ≤ c�
2
3 π r3 ∆�T

τ .

(2.14)

We use parameter values which are close to the ones observed experimentally for a
focused laser beam on silicium, i.e., r = 1 µm, D = 0.1 cm2/s, κs = 0.3 W/(cm ◦K),
∆�T = Tvapor(Si) − Tmelt(Si) = 900 ◦K (by using the vaporization temperature of
silicium, we overestimate Pliquid heating), ∆sT = Tmelt(Si) − Troom = 1400 ◦K, cl =
0.91 J/(g ◦K), τ = 1 µs, and L = 4129 J/(cm3). Equation (2.14) leads to⎧⎨

⎩
Pdiffusion = 0.083 W,
Pmelting ≤ 0.025 W,

Pliquid heating ≤ 0.0017 W.
(2.15)

For short times, i.e., t ≤ tp, we expect both r(t) and T�(t) to increase rapidly with
time and consequently the instantaneous rates dr/dt and dT�/dt should be close to
their average values. It follows that we can use the upper bounds in the second
and third lines of (2.15) as estimates of Pmelting and Pliquid heating, which leads to
Pmelting/Pliquid heating ≈ 15. Pliquid heating is therefore the smallest contribution to the
energy balance, which is dominated by Pdiffusion and Pmelting. Combining the latter
two contributions, we get

Pliquid heating

Pdiffusion + Pmelting
<

2

100
.(2.16)

The energy stored by the heating fluid is therefore quite small compared to the energy
transported by conduction and the energy used to melt the solid. In the following, we
make the hypothesis that Pliquid heating can be neglected. It follows that the energy
transferred by the laser during consecutive equal length time intervals can be regarded
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as an incompressible train of equal size energy grains. Since the energy used to heat
the fluid is negligible, then for each grain of energy entering the fluid at the upper
surface, there is another grain of energy (emitted earlier) that exits the fluid at the
liquid-solid interface. In other words, everything happens as if the energy entering the
liquid at the top surface was transported instantaneously at the liquid-solid interface.

2.5. Derivation of the ODE based on the model hypotheses. According
to hypothesis C, the melt region can be described by a hemisphere of radius r, as
shown in Figure 2.1. We will therefore focus on the description of r(t) as a function of
the time t. According to the point heat source hypothesis A, the condition of validity
of our model is

r(t) >> r0,(2.17)

where r0 is the beam radius.
According to hypothesis D, we neglect the third term of (2.12) (on the right-hand

side) to obtain

P =
κs ∆sT

ξ
√
D t

2πr2 + L 2πr2 dr

dt
.(2.18)

Introducing the dimensionless quantities

x ≡ 2 π
r

r0
, τ = 4 π2 D t

r2
0

, p =
P

D L r0
,(2.19)

we can rewrite (2.18) in the equivalent form

dx

dτ
=

p

x2
− A

τ1/2
,(2.20)

where we introduce the dimensionless material-properties-only constant

A ≡ κs ∆sT

ξ D L
.(2.21)

For most materials, A ≈ 1. With typical values for D (0.1 cm2/s), L (4129 J/cm3),
∆sT (1400 K), r0 (10−4 cm), and P = 1 W, we get τ ≈ 4 × 108 t and p ≈ 25. Using
the first quantity in (2.19), the constraint (2.17) implies that x >> 2π.

2.6. Initial value. The laser beam is turned on at τ = 0 and is kept on after-
ward. The size of the melt region is zero at τ = 0, and therefore it seems natural to
use the initial value x(0) ≡ x0 = 0. However, the differential equation (2.20) happens
to be singular at τ = 0 and x = 0. These singularities deserve a few comments.

First, we should stress that according to hypothesis A (point source approxima-
tion), we do not expect our model to be valid for r = 0. Indeed, the assumption (2.1)

implies that r(t) >> r0 and t >>
r2
0

D . Let us nevertheless consider our model in the
limit r → 0 and t → 0.

The origin of the singularity at t = 0 is the term κs ∆sT

ξ
√
D t

2πr2 in (2.18). The

parameter ∆sT ≡ Tm − Troom is fixed in our model, whereas in reality ∆sT = 0
for t = 0. Indeed, the medium does not melt instantaneously and therefore the
temperature at the laser beam impact point increases rapidly from its initial value
Troom to reach the melt value Tm. As expected, our equation does not correctly model
this part of the heating process, which causes the singularity at time zero.
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Fig. 2.1. Schematics showing the hemispherical melt region of a semiconductor irradiated by a
focused beam.

The singularity at r = 0 is more physical because we expect dr
dt to be very large for

t ≈ 0. Indeed, for t ≈ 0 the finite power from the laser beam is transferred to a tiny
hemisphere, which naturally causes the material to melt rapidly and consequently dr

dt
to be very large. In numerical simulations, we have to consider initial values such that
r0 > 0, even if it is not consistent with the physics of the problem. As a compromise,
we will consider solutions with r0 > 0 in the limit r0 → 0+.

2.7. A preliminary simplification of the ODE. The change of variables

R = p−1 x , θ = p−2 τ(2.22)

transforms (2.20) into

dR

dθ
= f(R, θ) ≡ 1

R2
− A√

θ
,(2.23)

which contains only one parameter (i.e., A ≥ 0), instead of two (i.e., A and p).
In the following, we will study the ODE (2.23) with the initial condition R(0) ≡
R0 > 0. The restriction x >> 2π implies that R >> 0.25 (i.e., R >> 2π/p with
p = 25). According to (2.22), the solutions of (2.20) and (2.23) are directly related
by x(τ, x0) = p R(p−2τ,R0). If R0 = x0 ≈ 0, then

x(τ) = p R(p−2τ).(2.24)
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In the following, we will assess the accuracy of approximate analytical solutions by
comparison with numerical solutions, for which we use A = 0.75, which is the value
of A corresponding to silicium.

3. Basic considerations.

3.1. Separability and integrating factor. Equation (2.23) is a nonlinear first
order nonautonomous ODE. If A = 0, then (2.23) becomes dR

dθ = 1
R2 , which is sepa-

rable, and the solution is

R(θ) = (3 θ + R3
0)

1/3.(3.1)

However, if A > 0, then (2.23) is not separable. Moreover, an integrating factor that
depends only on R or only on θ does not exist.

3.2. Sign of the derivative and direction field. Equation (2.23) can be
rewritten in the equivalent form

dR

dθ
= − A

R2
√
θ

(
R +

θ1/4

√
A

)(
R− θ1/4

√
A

)
,(3.2)

which shows that the function

ρ0(θ) ≡
θ1/4

√
A

(3.3)

plays a special role. On one hand, ρ0(θ) satisfies f(ρ0(θ), θ) = 0. On the other hand,
it follows from (3.2) that {

dR/dθ < 0 if R > ρ0(θ),
dR/dθ > 0 if R < ρ0(θ).

(3.4)

The inequalities (3.4) suggest that orbits have a tendency to remain close to ρ0(θ),
i.e., that ρ0(θ) is an asymptotic solution for θ → ∞. This is indeed the case, in the

sense that ρ̇0(θ) − f(ρ0(θ), θ) = θ−3/4

4
√
A

→ 0 as θ → ∞. The direction field (DF) of

(2.23) was plotted in Figure 3.1 for A = 0.75 and 0 ≤ θ ≤ 1. The DF is horizontal
on the solid curve R = ρ0(θ). The DF is pointing downward along the R-axis, which
indicates that orbits dive down for θ ≈ 0 and R(0) > 0. However, the large θ behavior
of the field is consistent with an increasing R(θ) as θ increases.

3.3. Singularities and numerical solutions. Equation (2.23) is singular at
R = 0 and θ = 0, which is problematic for initial values of the form R(0) = R0 > 0.
The singularity at θ = 0 can be circumvented with the change of variable s =

√
θ,

which transforms (2.23) into

dR

ds
= 2

(
−A +

s

R2

)
.(3.5)

Equation (3.5) is no longer singular at s = 0 but remains singular at R = 0. We
obtained our numerical solutions1 by solving (3.5) and then by replacing s by

√
θ.

With this method, we obtained several numerical solutions corresponding to different
values of R0 > 0 (Figure 3.2).

1In this paper, numerical solutions were obtained with the Mathematica function NDSolve, which
switches between a nonstiff Adams method and a stiff Gear method.
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Fig. 3.1. DF of (2.23) for A = 0.75. The solid curve represents the set of points for which the

DF is horizontal, i.e., R = ρ0(θ) ≡ θ1/4/
√
A.

Considering Figure 3.2, the first important observation is that R(θ,R0) is virtually
independent of R0 for large enough θ. This is fortunate because we did not know a
priori which value to choose for R0. Figure 3.2 informs us that any R0 < 0.1 leads
essentially to the same solution for θ >> 0.002. The second observation is that
the validity condition R >> 0.25 corresponds approximately to the validity range
θ >> θ1 ≡ 0.002.

3.4. Anomalous behavior of R(θ) around θ = 0. The physics of this prob-
lem implies that the melt region expands with time. However, as clearly seen on the
DF, all solutions with R0 > 0 dive down in the neighborhood of θ = 0 before even-
tually going up again. This peculiar behavior occurs in the region where the ODE
is not valid. To be cautious, it is important to see if this anomaly can overlap the
validity range θ > θ1 of the ODE.

We analyzed the behavior of R(θ) as θ → 0 in Appendix A and found that{
If R0 > 0, R(θ) ∼ R0 − 2 A

√
θ + 1

R2
0
θ,

If R0 ≈ 0, R(θ) ∼ (3 θ)1/3
(3.6)

as θ → 0. Solutions with R0 > 0 and R0 ≈ 0 are qualitatively different. Indeed, if
R0 ≈ 0, then R(θ) increases for all θ ≥ 0, as it should. However, if R0 > 0, then
R(θ) decreases, reaches a minimum around θmin = A2 R4

0, and then increases (R(θ)
is U-shaped). If we consider, for instance, a solution obtained with R0 = 0.001, then
we get θmin ≈ 5.6×10−13 << θ1 = 0.002. Hence the anomalous behavior (3.6) occurs
at very short times and does not overlap the validity range θ > θ1 of the ODE.

3.5. Perturbation solution for A small. The solution for A = 0 is known
exactly, i.e., R(θ) = (R3

0 + 3 θ)1/3, and we assume that 0 ≤ A ≤ 1. In this context, it
is appropriate to look for a perturbation solution that would be valid for A small. If
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Fig. 3.2. Numerical solutions for the initial values R(0) = (0.001, 0.01, 0.02, 0.05, 0.1).
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Fig. 3.3. The solid curve is a numerical solution with R(0) = 0.001 and A = 0.75, while the
dotted curve is the perturbation solution (3.8). The curves are superposed; i.e., the agreement is
excellent.

we search for a solution of the form

R(θ) =
∞∑

n=0

An Rn(θ),(3.7)
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where the Rns are unknown functions and R(0) = 0, then it is straightforward to
show (see Appendix B) that the perturbation method leads to the series

R(θ) = (3 θ)1/3 − 6

7

√
θ A +

3

49
(3 θ)2/3 A2 − 8 31/3

343
θ5/6 A3

− 711

12005
θ A4 +

4824 32/3

924385
θ7/6 A5 + O(A)6.

(3.8)

As shown in Figure 3.3, an excellent agreement of (3.8) with numerical solutions is
obtained for 0 ≤ θ ≤ 1.

3.6. Dependence of the solution on the parameter A. We notice that
(3.8) can be written in the form R(θ) =

∑5
n=0 cn (θ1/6)n+2 An, where the cns are real

coefficients. Factorizing θ1/3 yields R(θ) = θ1/3
∑5

n=0 cn (A θ1/6)n, which suggests
that the solution with R0 = 0 has the general form

R(θ) = θ1/3 F (A θ1/6),(3.9)

where F is an unknown function. Substituting (3.9) into (2.23) and using the change
of variable u = A θ1/6 lead to

dF

du
=

6 (1 − u F 2) − 2 F 3

u F 2
.(3.10)

Equation (3.10) does not depend explicitly on A, and therefore (3.9) is indeed correct
in general. The initial condition for (3.10) is F (0) = 31/3, which follows from R(θ) ∼
(3 θ)1/3 as θ → 0. Equation (3.10) is a key equation that allows us to recover the
MacLaurin series of F (u) directly, i.e., without using the perturbation method. Con-
sider, for instance, F ′(0). According to (3.10), F ′(0) has an indeterminate form 0/0.

However, using l’Hôspital’s rule yields F ′(0) = limu→0
−6 (F 2+2 u F F ′)−6 F 2 F ′

F 2+2 u F F ′ =
−6 − 6 F ′(0) ⇒ F ′(0) = −6/7, which is correct according to (3.8). Higher or-
der derivatives can also be obtained to recover the whole expansion, i.e., F (u) =

31/3 − 6
7 u + 9 32/3

49 u2 − 8 31/3

343 u3 − 711
12005 u4 + 4824 32/3

924385 u5 + O(u)6.

4. Asymptotic behavior for θ → ∞. In the spirit of the geometrical methods
of Poincaré, we will try to locate the orbit R(θ) by examining its distance with respect
to a reference curve. We have seen previously that the curve R = ρ0(θ), defined by
(3.3), is an asymptotic solution as θ → ∞. We will therefore choose R = ρ0(θ) as our
reference curve. We consider the time evolution of the distance function U(θ) defined
by

U(θ) ≡ 1

2
(R(θ) − ρ0(θ))

2
.(4.1)

A time derivative gives dU
dθ = (R − ρ0)(Ṙ − ρ̇0) = (R − ρ0)(f(R, θ) − ρ̇0). The factor

f(R, θ) − ρ̇0 has two roots R = ± ρ1(θ), which yields the factorization

dU

dθ
= − (1 + 4 A3/2 θ1/4)

4
√
A R2 θ3/4

(R + ρ1(θ))(R− ρ0(θ))(R− ρ1(θ)),(4.2)

where

ρ1(θ) =
2 A1/4 θ3/8

√
1 + 4 A3/2 θ1/4

.(4.3)
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Fig. 4.1. Dotted lines: Functions ρ0(θ) (top) and ρ1(θ) (bottom). Solid lines are orbits with
different values of R(0) > 0, i.e., (0.01, 0.1, 0.25, 0.5, 0.75, 1, 1.25, 1.5). The solutions that correspond
to R(0) = 0.01 and 0.01 are superposed. Here A = 0.75.

The functions ρ0(θ) and ρ1(θ), which are plotted in Figure 4.1 for A = 0.75, satisfy

ρ0(θ) > ρ1(θ) > 0(4.4)

for all θ > 0 as long as A > 0. It follows from (4.2) and (4.4) that⎧⎪⎪⎨
⎪⎪⎩

dU
dθ < 0 if R > ρ0(θ) or R < ρ1(θ),

dU
dθ > 0 if ρ0(θ) < R < ρ1(θ),

dU
dθ = 0 if R = ρ0(θ) or R = ρ1(θ).

(4.5)

In other words, the crescent-shaped zone bounded by the curves R = ρ0(θ) and
R = ρ1(θ) is attractive for all orbits that are outside the crescent. If R(0) > 0, then
the orbit is in the region R > ρ0(θ) initially, i.e., outside the crescent. If R(0) = 0,
then according to (3.6) we have R(θ) ∼ (3 θ)1/3 as θ → 0, and consequently the orbit
lies between the two curves ρ0(θ) and ρ1(θ) initially. Indeed, ρ1(θ) ∼ 2 A1/4 θ3/8 as
θ → 0, and one shows easily that 2 A1/4 θ3/8 < (3 θ)1/3 < θ1/4/

√
A as θ → 0. In

summary, the orbit is initially located either above the reference curve R = ρ0(θ) (for
R0 > 0), or between ρ0(θ) and ρ1(θ) (for R0 = 0).

If the orbit starts above R = ρ0(θ), then it follows from the first line of (4.5) that
R(θ) gets closer to ρ0(θ) as θ increases. This behavior is illustrated by the numerical
solutions displayed in Figure 4.1. All orbits with R(0) > 0 cross the curve R = ρ0(θ)
because the DF is horizontal on this curve. Once inside the crescent-shaped region
ρ0(θ) < R < ρ1(θ), then the second line of (4.5) implies that the orbit R(θ) goes away
from the upper boundary of the crescent R = ρ0(θ). We are going to prove that this
orbit cannot cross the bottom curve R = ρ1(θ) because this would imply U̇(θ) > 0,
which is not possible on and below this curve according to (4.5).
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First,

U̇ = (ρ0 −R)(ρ̇0 − Ṙ) = (ρ0 −R) Ḋ,(4.6)

where D(θ) ≡ ρ0(θ) −R(θ). The distance D(θ) satisfies

Ḋ = ρ̇0(θ) − Ṙ(θ) = ρ̇0(θ) − ρ̇1(θ) + ρ̇1(θ) − Ṙ(θ) = Ḋ0 + ρ̇1(θ) − Ṙ(θ),(4.7)

where D0(θ) ≡ ρ0(θ) − ρ1(θ) is the distance between the two curves. It can be shown
that Ḋ0 > 0 for all θ > 0; i.e., the distance separating the two curves increases. If
we assume that an orbit crosses the curve R = ρ1(θ) from above, then this orbit has
to satisfy Ṙ < ρ̇1 ⇒ ρ̇1(θ) − Ṙ(θ) > 0 at the crossing point. Since Ḋ0 > 0 and
ρ̇1(θ) − Ṙ(θ) > 0 at the crossing point, (4.7) implies that Ḋ > 0. Since R < ρ0 and
Ḋ > 0 at the crossing point, it follows from (4.6) that U̇ > 0, which is not possible
on or below the curve R = ρ1(θ) according to (4.5). Hence there is no crossing
point.

The orbit must therefore remain within the crescent, while going away from the
upper curve R = ρ0(θ). Orbits that start within the crescent, and, in particular, the
orbit with R0 = 0, also remain within the crescent for all θ > 0 (for the same reasons).
It can be shown that limθ→∞ ρ0(θ)−ρ1(θ) = 1/(8 A2). Hence the orbit is sandwiched
between two curves that are separated by an asymptotically finite constant distance
and goes away from the upper curve. Numerical solutions (Figure 4.1) indicate that
the limit orbit is much closer to ρ1(θ) (bottom curve) than to ρ0(θ) for A = 0.75. It
follows that a possible asymptotic behavior for the orbit is

R(θ) ∼ 2 A1/4 θ3/8

√
1 + 4 A3/2 θ1/4

+ C(A,R0) as θ → ∞,(4.8)

where C(A,R0) << 1/(8 A2). Numerical solutions suggest that C(A,R0) could be
independent of R0. ρ1(θ) satisfies (2.23) asymptotically as θ → ∞. Indeed, as θ → ∞,
we have ρ̇1(θ)−f(ρ1(θ), θ) ∼ 1

4
√
A θ3/4

→ 0. Finally, let us stress that (4.8) has exactly

the functional form (3.9), with F (u) = (2 u1/4)/(
√

1 + 4 u3/2).

5. More accurate asymptotic solutions for θ → ∞. The asymptotic so-
lution ρ1(θ) was shown to be an improvement on the first guess ρ0(θ). One may
hope that a similar procedure could allow us to further improve the solution. Let us
therefore consider the distance function

V (θ) ≡ 1

2
(R(θ) − ρ1(θ))

2
.(5.1)

Taking the time derivative and factorizing as previously yield

V̇ (θ) = −a(θ)(R + ρ2(θ))(R− ρ1(θ))(R− ρ2(θ)),(5.2)

where ρ2(θ) > 0 and a(θ) > 0 are given by

ρ2(θ) =
2 (1 + 4 A3/2 θ1/4)

3/4
θ5/16√

3 A1/4 + 4 A (1 + 4 A3/2 θ1/4)
3/2

θ1/8 + 8 A7/4 θ1/4

,

a(θ) =
3 A1/4 + 4 A (1 + 4 A3/2 θ1/4)

3/2
θ1/8 + 8 A7/4 θ1/4

4 R2 (1 + 4 A3/2 θ1/4)
3/2

θ5/8
.

(5.3)
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It can be shown that ρ2(θ) > ρ1(θ) for all θ > 0, which implies with (5.2) that

V̇ (θ) < 0 if R > ρ2(θ) or R < ρ1(θ),

V̇ (θ) > 0 if ρ1(θ) < R < ρ2(θ);
(5.4)

i.e., the crescent region bounded by the curves R = ρ1(θ) and R = ρ2(θ) is attractive.
The situation is therefore similar to the previous case in the sense that we have
identified another crescent-shaped region which is attractive for orbits that are outside
this region. However, the arguments that we used in section 4 to prove that orbits
entering this crescent are trapped no longer holds in this case. Indeed, the problem
is that ρ̇2 − ρ̇1 < 0; i.e., the two curves get closer to each other as θ increases (which
can be shown numerically for A = 0.75).

We cannot establish with the same argument that the orbit stays inside this
new crescent, but we can at least claim that ρ2(θ) is an asymptotic solution because
ρ2(θ) ∼ θ1/4/

√
A as θ → ∞. We may ask if ρ2(θ) is a better approximation of R(θ)

than ρ1(θ) for 0 ≤ θ ≤ 1. Numerical solutions (Figure 5.1) indicate that the orbits
with R0 ≈ 0 are closer to ρ2(θ) than to ρ1(θ). In Figure 5.1, a low value of A was used
to get a clearly visible spacing between the curves bounding the crescent. Indeed, for
A = 0.75 the curves ρ1(θ) and ρ2(θ) are almost superposed. We can therefore propose
the asymptotic solution

R(θ) ∼ 2 (1 + 4 A3/2 θ1/4)
3/4

θ5/16√
3 A1/4 + 4 A (1 + 4 A3/2 θ1/4)

3/2
θ1/8 + 8 A7/4 θ1/4

(5.5)

as θ → ∞, which is more accurate than ρ1(θ) for 0 ≤ θ ≤ 1. As shown in Figure 5.2,
ρ2(θ) appears to be a good asymptotic solution. Moreover, the range of validity of
ρ2(θ) is broader if R(0) ≈ 0, which is precisely the limit we are interested in.

Remark. The iterative process that allowed us to find ρ1(θ) and ρ2(θ), start-
ing with R = ρ0(θ), can be summarized as follows. In both cases, the new curve
R = ρn+1(θ) bounding the crescent zone is the positive root of the equation

f(ρn+1, θ) = ρ̇n(θ),(5.6)

where ρn(θ) is the previous curve. Using (2.23), (5.6) leads to the iteration formula

ρn+1(θ) =
θ1/4√√

θ ρ̇n(θ) + A
.(5.7)

Roughly speaking, (5.7) is a kind of backward Picard iteration, because we iterate a
derivative instead of an integration. We notice that ρn(0) = 0 for all n and conse-
quently the initial value R(0) = 0 is conserved exactly during iteration. Using the
initial value ρ̇−1(θ) = 0, we can iterate (5.7) to get successively ρ0(θ), ρ1(θ), and ρ2(θ).
It might be possible to generalize this iterative process to find asymptotic solutions
for other ODEs.

6. Conclusions. The only exact result that we derived about the solution of
the ODE (2.23) with R(0) ≈ 0 is the functional form (3.9). Using (2.22), (3.9) leads
to

x(τ, p) = (p τ)1/3 F (A p−1/3 τ1/6),(6.1)
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Fig. 5.1. Results obtained with A = 0.1. The solid curves are numerical solutions obtained
with R0 = (0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9). Solutions with R0 = 0.01, 0.1 are superposed.
The dashed curves are R = ρ1(θ) (bottom) and R = ρ2(θ) (top). In the range 0 ≤ θ ≤ 1, orbits
that enter the crescent remain in the crescent, move away from R = ρ2(θ) as expected, but remain
nevertheless closer to R = ρ2(θ) than to R = ρ1(θ).

where F satisfies the ODE (3.10). Equation (6.1) could be useful to represent exper-
imental data obtained with varying beam power p.

To compare the three approximate analytical solutions obtained in this paper,
we plotted in Figure 6.1 (top) their relative errors (in percent) with respect to the
numerical solution, using A = 0.75 and R0 = 0.001. The perturbation solution
(3.8) is the most accurate over most of the range, except for θ > 0.4, where the
asymptotic solution R = ρ2(θ) is more accurate (using more terms in the perturbation
solution would increase its accuracy). The asymptotic solution R = ρ2(θ) is the second
best approximation and its error has a minimum around θ = 0.004. The third best
approximation is R = ρ1(θ).

The solution R = ρ1(θ) is attractive because of its greatest simplicity. In spite of
its slightly lower accuracy, we are going to see that this solution is the most useful in
practice. First, we should first remember that the ODE studied in this paper is derived
from an approximate model. In particular, the melt region is not exactly hemispherical
and the model ODE is valid only for θ >> θ1 = 0.002, for, say, θ ≥ 0.02. Knowing
that experimental errors lie in the range of 5–10% [3], we can therefore conclude
that the error in the approximate solutions of the model equations is smaller than
the error in experimental measurement. From this standpoint, the most interesting
solution is the one that offers a good compromise between simplicity and accuracy.
From this perspective, the asymptotic solution R(θ) = ρ1(θ) is the simplest and has
an error smaller than 3% in the validity range θ ≥ 0.02. More importantly, this
error decreases as θ increases, which is not the case for the perturbation solution. To
introduce explicitly the dependence on the beam power p, we can combine (2.24) and
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Fig. 5.2. Results obtained with A = 0.75. The dashed curves are numerical solutions obtained
with different positive values of R(0) > 0. The solid curve is the asymptotic solution R = ρ2(θ).

(4.3) to obtain

x(τ, p) =
2 A1/4 p1/4 τ3/8√

1 + 4 A3/2 p−1/2 τ1/4
,(6.2)

which gives an error smaller than 3% for τ ≥ 12.5, which corresponds to t ≥ 0.03 µs.
A satisfactory comparison of the model (6.2) with experimental data is presented
in [3].

We will conclude on a note about the geometrical method that we used to de-
rive the asymptotic solution R = ρ1(θ). This possibly original method leads us to
three increasingly accurate asymptotic solutions ρ0(θ), ρ1(θ), and ρ2(θ) that could be
obtained by iterating the formula

f(ρn+1, θ) =
d

dθ
ρn(θ)(6.3)

starting with ρ−1(θ) = 0. In (6.3), f is the function that defines the ODE, i.e.,
dR
dθ = f(R, θ). Roughly speaking, (6.3) is a kind of backward Picard iteration, because
we iterate a derivative instead of an integration. It would be interesting to see if the
iterative process (6.3) could be generalized to find approximate solutions for other
ODEs.

Appendix A. Asymptotic behavior of R(θ) as θ → 0 for A > 0.
To study R(θ) around θ = 0, we will make the hypothesis

R(θ) ∼ R0 + c θα(A.1)

as θ → 0, where α > 0 and c is a constant. Substituting (A.1) into (2.23) yields

c α

θ1−α
= − A

θ1/2
+

1

(R0 + c θα)2
.(A.2)
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Fig. 6.1. Comparison of the approximate solutions for A = 0.75 and R0 = 0.001. We plotted
the relative error in % with respect to the numerical solution, versus θ. Top-left: Error on R = ρ1(θ).
Center-left: Error on R = ρ2(θ). Bottom-left: Error on the perturbation solution (3.8).

If R0 > 0, then the term A
θ1/2 on the right-hand side of (A.2) dominates as θ → 0. It

follows that c α = −A and 1 − α = 1/2 ⇒ α = 1/2, which in turn implies c = −2A.
Hence, we have the asymptotic behavior

If R0 > 0 , R(θ) ∼ R0 − 2 A
√
θ(A.3)

as θ → 0; i.e., the orbit dives downward before it eventually returns to an increasing
regime. If R0 = 0, (A.2) becomes

c α

θ1−α
= − A

θ1/2
+

1

c2 θ2α
.(A.4)

One must examine two cases. First, if we assume that 2α > 1/2 ⇒ α > 1/4, then
the term 1/(c2 θ2α) (right-hand side of (A.4)) dominates as θ → 0, and therefore
c α = 1/c2 and 1 − α = 2 α ⇒ α = 1/3, which also implies c = 31/3. Second, if we
assume instead that 2α < 1/2 ⇒ α < 1/4, then we must have 1−α = 1/2 ⇒ α = 1/2,
which contradicts our assumption α < 1/4. Hence, for R0 = 0, we have the following
asymptotic behavior:

If R0 = 0, R(θ) ∼ (3 θ)1/3(A.5)

as θ → 0, which is consistent with (3.1).
Comparing (A.3) with (A.5), we see that solutions are qualitatively different for

R0 > 0 and R0 = 0. Indeed, R(θ) increases if R0 = 0, whereas it decreases if R0 > 0.
According to the DF, R(θ) should return rapidly to an increasing regime even if
R0 > 0. To see how this return occurs, we may try to find a better approximation
of R(θ) around θ = 0 with a MacLaurin expansion. Equation (3.5) implies that
the derivatives of R(s) are well defined at s = 0 as long as R0 > 0, and therefore
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Fig. A.1. Behavior of R(θ) around θ = 0 for R0 = 0.1. Here A = 0.75, and θmin ≈ 0.000056.

The solid line is a numerical solution, and the dashed curves are R0 − 2 A
√
θ (going down) and

R0 − 2 A
√
θ + 1

R2
0

θ (going back up).

R(s) =
∑∞

n=0
1
n!

dnR
dsn (0) sn. Using (3.5) to compute the derivatives dnR

dsn (0) leads to

R(s) = R0 − 2 A s+ s2

R2
0

+ 8 A
3 R3

0
s3 + ( 6 A2

R4
0

− 1
2 R5

0
) s4 +O(s)5, and replacing s by θ1/2

gives

R(θ) = R0 − 2 A θ1/2 +
θ

R2
0

+
8 A

3 R3
0

θ3/2 + O(θ)2.(A.6)

The first three terms of (A.6) give the approximation R̃(θ) ≡ R0−2 A θ1/2 + θ
R2

0
. The

minimum of R̃(θ) occurs at θmin = A2 R4
0. As shown in Figure A.1, R̃(θ) describes

fairly well the behavior of R(θ) around θ = 0 for R0 > 0.

Appendix B. Perturbation solution.
Substituting (3.7) into (2.23) yields

∞∑
n=0

An Ṙn(θ) = − A√
θ

+
1

(
∑∞

n=0 A
n Rn(θ))2

.(B.1)

Expanding the rightmost term of (B.1) in Taylor series around A = 0 to order 2 yields

Ṙ0 + Ṙ1 A + Ṙ2 A2 = − A√
θ

+
1

R2
0

− 2

R3
0

R1 A +

(
3R2

1

R4
0

− 2

R3
0

)
A2,(B.2)
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where ḟ ≡ df
dθ for any function f . Identifying the terms of order 0, 1, and 2 yields

Ṙ0 =
1

R2
0

,

Ṙ1 = − 1√
θ
− 2

R3
0

R1,

Ṙ2 =
3R2

1

R4
0

− 2

R3
0

R2.

(B.3)

We will solve (B.3) with the initial value R(0) = 0. The solution of the first equation
of (B.3) is R0(θ) = (3 θ)1/3. Substituting R0(θ) into the second equation of (B.3), we
get

Ṙ1 +
2

3 θ
R1 = − 1√

θ
.(B.4)

Fortunately, (B.4) is a nonhomogeneous linear equation. Its general solution is R1(θ) =
− 6

7

√
θ+ C

θ2/3 , where C is an arbitrary constant. The initial condition R1(0) = 0 then
imposes C = 0 so that

R1(θ) = −6

7

√
θ.(B.5)

Using previous results for R0(θ) and R1(θ), the third equation of (B.3) becomes

Ṙ2 +
2

3 θ
R2 =

k1

θ1/3
,(B.6)

where k1 = 4 32/3/49, which is again a linear nonhomogeneous ODE. Its general
solution is R2(θ) = 3

49 (3 θ)2/3 + C
θ2/3 , where C is an arbitrary constant. The initial

condition R2(0) = 0 again implies C = 0, and therefore

R2(θ) =
3

49
(3 θ)2/3.(B.7)

This process can be continued, and the equations remain linear and easy to solve.
The first six terms lead to the expansion (3.8).
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